关于K均值和DBSCAN的比较,以下说法不正确的是()。
A、K均值丢弃被它识别为噪声的对象,而DBSCAN一般聚类所有对象
B、K均值使用簇的基于原型的概念,而DBSCAN使用基于密度的概念
C、K均值很难处理非球形的簇和不同大小的簇,DBSCAN可以处理不同大小和不同形状的簇
D、K均值可以发现不是明显分离的簇,即便簇有重叠也可以发现,但是DBSCAN会合并有重叠的簇
A、K均值丢弃被它识别为噪声的对象,而DBSCAN一般聚类所有对象
B、K均值使用簇的基于原型的概念,而DBSCAN使用基于密度的概念
C、K均值很难处理非球形的簇和不同大小的簇,DBSCAN可以处理不同大小和不同形状的簇
D、K均值可以发现不是明显分离的簇,即便簇有重叠也可以发现,但是DBSCAN会合并有重叠的簇
A、K均值丢弃被它识别为噪声的对象,而DBSCAN一般聚类所有对象 B、K均值使用簇的基于原型的概念,而DBSCAN使用基于密度的概念 C、K均值很难处理非球形的簇和不同大小的簇,DBSCAN可以处理不同大小和不同形状的簇 D、K均值可以发现不是明显分离的簇,即便簇有重叠也可以发现,但是DBSCAN会合并有重叠的簇
A、总传热系数K可用来表示传热过程的强弱与冷热流体的物性无关。 B、传热过程中总传热系数K实际是个平均值。 C、总的传热系数K随着所取的传热面不同而异。 D、要提高K值,应从降低最大热阻着手。 E、总传热系数K与两侧流体的流动形式无关。
A、当簇只包含少量数据点,或者数据点近似协线性时,混合模型也能很好地处理 B、混合模型比K均值或模糊c均值更一般,因为它可以使用各种类型的分布 C、混合模型很难发现不同大小和椭球形状的簇 D、混合模型在有噪声和离群点时不会存在问题
A、当簇只包含少量数据点,或者数据点近似协线性时,混合模型也能很好地处理 B、混合模型比K均值或模糊C均值更一般,因为它可以使用各种类型的分布 C、混合模型很难发现不同大小和椭球形状的簇 D、混合模型在有噪声和离群点时不会存在问题