公式中的<img height="36" src="https://nimg.ppkao.com/2018-08/longzhengxuan/2018081910030332049.jpg?sign=a12f56d208b87c7fc4f67320f3653aaa&t=62d51e50" style="width: 70px; height: 25px;" width="94" />p是()
A、绝对压强
B、相对压强
C、绝对压强或相对压强
D、真空压强
A、绝对压强
B、相对压强
C、绝对压强或相对压强
D、真空压强
A、A.<img height="31" src="https://img.ppkao.com/2018-08/longzhengxuan/2018082011084972801.jpg" width="43" />
B.<img height="42" src="https://img.ppkao.com/2018-08/longzhengxuan/2018082011085498333.jpg" style="width: 49px; height: 33px;" width="45" />
C.<img height="40" src="https://img.ppkao.com/2018-08/longzhengxuan/2018082011085966126.jpg" width="71" />
D.<img height="25" src="https://img.ppkao.com/2018-08/longzhengxuan/2018082011090399902.jpg" width="60" />
A、A.<img height="79" src="https://img.ppkao.com/2018-07/zhouyun/2018070811294848581.png" style="width: 87px; height: 84px;" width="74" />
B.<img height="94" src="https://img.ppkao.com/2018-07/zhouyun/2018070811295982810.jpg" width="97" />
C.<img height="94" src="https://img.ppkao.com/2018-07/zhouyun/2018070811300776452.jpg" style="width: 101px; height: 92px;" width="96" />
A、在牛顿-柯特斯求积公式:<img src="https://img.ppkao.com/2019-05/wanxiaokui/2019051614474078173.jpg" />中,当系数<img src="https://img.ppkao.com/2019-05/wanxiaokui/2019051614472994714.jpg" />是负值时,公式的稳定性不能保证,所以实际应用中,当()时的牛顿-柯特斯求积公式不使用。
A、如图所示为溢流阀的几种应用,试指出图中溢流阀在各种回路中的具体作用。<img height="245" src="https://img.ppkao.com/2018-08/longzhengxuan/2018082314142567011.jpg" style="width: 574px; height: 162px;" width="787" />
A、A.单击并拖曳旋转工具
B.按住Alt键的同时拖曳【<img height="24" src="https://img.ppkao.com/2017-07/hucan/2017070616054247006.png" style="width: 18px; height: 16px;" width="19" />移动工具】
C.执行【选择】︱【变换选区】命令
D.执行【编辑】︱【变换】︱【旋转】命令
A、A.<img height="158" src="https://img.ppkao.com/2018-03/zhouyun/2018031910343149452.jpg" style="width: 287px; height: 149px;" width="231" />
B.<img height="158" src="https://img.ppkao.com/2018-03/zhouyun/2018031910351063242.jpg" style="width: 292px; height: 148px;" width="296" />
C.<img height="147" src="https://img.ppkao.com/2018-03/zhouyun/2018031910354645604.jpg" style="width: 308px; height: 151px;" width="308" />
D.<img height="166" src="https://img.ppkao.com/2018-03/zhouyun/2018031910361497746.jpg" style="width: 302px; height: 167px;" width="340" />
A、A.<img height="24" src="https://img.ppkao.com/2018-08/longzhengxuan/2018082411093733140.jpg" width="48" />
B.<img height="23" src="https://img.ppkao.com/2018-08/longzhengxuan/2018082411094122769.jpg" width="52" />
C.<img height="21" src="https://img.ppkao.com/2018-08/longzhengxuan/201808241109444116.jpg" width="52" />
D.<img height="25" src="https://img.ppkao.com/2018-08/longzhengxuan/2018082411094827166.jpg" width="70" />
A、求一维谐振子的坐标及Hamilton量在能量表象中的矩阵表示。提示:可利用公式:
<img src="https://img.ppkao.com/2019-04/liyunao/2019041014255620996.jpg" />
A、与<img height="30" src="https://nimg.ppkao.com/2018-08/longzhengxuan/2018081909323010476.jpg?sign=479e03d50e63fc768e94a5bdb1b1f55b&t=62d219fa" style="width: 22px; height: 22px;" width="19" />有关,与<img height="23" src="https://nimg.ppkao.com/2018-08/longzhengxuan/2018081909324279383.jpg?sign=7d0dc4e422bc861c91c8c2775ab01ffe&t=62d219fa" width="28" />无关 B、与<img height="24" src="https://nimg.ppkao.com/2018-08/longzhengxuan/2018081909325769783.jpg?sign=8d39c895389adc3b0d9bd5373adc24e5&t=62d219fa" width="24" />无关,与<img height="36" src="https://nimg.ppkao.com/2018-08/longzhengxuan/2018081909330331137.jpg?sign=1118141183506330e4d6e1707a79ee2e&t=62d219fa" style="width: 30px; height: 29px;" width="30" />有关 C、既与<img height="36" src="https://nimg.ppkao.com/2018-08/longzhengxuan/201808190933134487.jpg?sign=7f37633279c9ef348bfc92b892f64a34&t=62d219fa" style="width: 29px; height: 26px;" width="33" />有关,也与<img height="24" src="https://nimg.ppkao.com/2018-08/longzhengxuan/2018081909332791074.jpg?sign=ca67453da32b859bed71c5bf468504c5&t=62d219fa" width="23" />有关
A、A.<img src="https://img.ppkao.com/2018-06/wujiake/2018061914485364047.jpg" />
B.<img height="63" src="https://img.ppkao.com/2018-06/wujiake/2018061914485977465.jpg" width="94" />
C.<img height="66" src="https://img.ppkao.com/2018-06/wujiake/2018061914490493672.jpg" width="91" />